The measurement of body segment inertial parameters using dual energy X-ray absorptiometry Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Accurate body segment parameter (BSP) information is required for dynamic analyses of motion and the current methods available for obtaining these BSPs have been criticized. The purpose of this study was to determine whether dual energy X-ray absorptiometry (DXA) could accurately measure the BSPs of scanned objects and thus be used as a tool for measuring the BSPs of human subjects. Whole body mass (WBM) of 11 males was measured from a DXA scan and the values were compared to criterion scale-measured values by calculating the mean percent error. Two objects (plastic cylinder, human cadaver leg) were also scanned and DXA measurements of mass, length, centre of mass location (CM) and moment of inertia about the centre of mass (I(CM)) were made using custom software. Criterion BSP measurements were then made and compared to DXA BSP values by calculating the percent error. Criterion I(CM) measurements of the two objects were made using a pendulum technique and a second criterion I(CM) calculation was made for the cylinder using a geometric formula. A mean percent error of -1.05% +/-1.32% was found for WBM measurements of the human subjects. Errors for the cylinder and cadaver leg were under 3.2% for all BSPs except for I(CM) when DXA was compared to the pendulum method (14.3% and 8.2% for cylinder and leg, respectively). The errors between DXA and the pendulum method were attributed to uncertainty in the pendulum technique (J. Biomech. 2002, in Review). I(CM) error of the cylinder when DXA was compared to the geometric calculation was 2.63%. This error, combined with the low errors for all other BSPs, indicated that DXA can be used as a simple and accurate means of obtaining direct BSP information on living humans.

publication date

  • December 2002

has subject area