Maternal effects and drought tolerance determine seedling establishment success in a common roadside plant, Dipsacus fullonum subsp sylvestris Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Previous studies have demonstrated that plants collected as seeds from roadside populations of Dipsacus fullonum L. subsp sylvestris (Huds.) Claphamare more tolerant of high salinity, low osmotic potentials, and hypoxia during juvenile growth stages than those from oldfield populations. However, it is unclear how tolerance to these abiotic stressors translates into performance in the roadside environment. Here, we conducted a reciprocal transplant experiment between oldfield and roadside environments. Seeds from three roadside and three oldfield populations were planted into oldfield and roadside sites in late fall. Throughout the spring and summer, the survivorship and size of the seedlings were monitored to examine differences in performance in the two habitats. We also assessed the relation between performance in the field and previous in vitro measures of salt and drought tolerance of each population. A drought caused high mortality levels in the oldfield and roadside. Individuals from roadside populations did not exhibit increased growth or survivorship in the roadside environment. In the early months of seedling growth, neither salt nor drought tolerance were significantly correlated with performance in the roadside during seedling establishment. Rather, during these early months, the average size of individuals in each population in the field was positively correlated with the population’s average seed mass, indicating that maternal provisioning had a greater impact than tolerance to particular environmental stresses during the juvenile stages of development. However, later in the summer, after the drought began, the average size of individuals from each population in the field was positively correlated with that population’s average drought tolerance.

publication date

  • October 2010