Home
Scholarly Works
Synthesis and dielectric properties of barium...
Journal article

Synthesis and dielectric properties of barium tantalates and niobates with complex perovskite structure

Abstract

Phase composition, degree of cation ordering, and dielectric properties of complex perovskites with general formula Ba(B’ 1/3B"2/3)O3, where B′ = Mg, Zn, and Ni and B" = Nb and Ta, were analyzed. It was found that all the studied complex perovskites attained high degrees of 1:2 cation ordering at temperatures specific to each composition. A high temperature order–disorder phase transition in Ba(Zn1/3Nb2/3)O3 occurred below 1380 °C. Ba(Ni1/3Nb2/3)O3 (BNN) and Ba(Mg1/3Nb2/3)O3 (BMN) pervoskites remained 100% ordered at temperatures as high as 1500 and 1620 °C, respectively. It was found that in BMN and BNN extrinsic factors, such as the second phase (i.e., Ba3Nb5O15) and point defects, dominated the dielectric loss at microwave frequencies. Ba(Mg1/3Ta2/3)O3 (BMT) remained single phase up to 1630 °C. Above this temperature, the Ba3Ta5O15 second phase was detected. A decrease in the 1:2 cation ordering and increase of dielectric loss in BMT occurred at sintering temperatures above 1590 °C. It was also revealed by electron paramagnetic resonance that all samples studied contained a substantial amount of paramagnetic point defects. These defects contributed to extrinsic dielectric loss at microwave frequencies, thus degrading the Q factor.

Authors

Kolodiazhnyi T; Petric A; Belous A; V’yunov O; Yanchevskij O

Journal

Journal of Materials Research, Vol. 17, No. 12, pp. 3182–3189

Publisher

Springer Nature

Publication Date

January 1, 2002

DOI

10.1557/jmr.2002.0460

ISSN

0884-2914

Contact the Experts team