Home
Scholarly Works
Energy substrate utilization during prolonged...
Journal article

Energy substrate utilization during prolonged exercise with and without carbohydrate intake in preadolescent and adolescent girls

Abstract

Little information is available on energy metabolism during exercise in girls, particularly the contribution of exogenous carbohydrate (CHO(exo)). The purpose of this study was to determine substrate utilization during exercise with and without CHO(exo) intake in healthy girls. Twelve-yr-old preadolescent (YG; n = 12) and 14-yr-old adolescent (OG; n = 10) girls consumed flavored water (WT) or (13)C-enriched 6% CHO (CT) while cycling for 60 min at approximately 70% maximal aerobic power (Vo(2max)). Substrate utilization was calculated for the final 15 min of exercise. CHO(exo) decreased fat oxidation by approximately 50% in YG but not in OG (P < 0.001) and decreased endogenous CHO oxidation by approximately 15% in OG but not in YG (P = 0.006). Endogenous CHO oxidation was lower in YG than in OG regardless of trial (P < or = 0.01), whereas fat oxidation was higher in YG only during WT (P < 0.001). CHO(exo) oxidation rate was similar between YG and OG (7.1 +/- 0.5 and 6.8 +/- 0.4 mg.kg(-1).min(-1), respectively, P = 0.67), contributing approximately 19% to total energy expenditure. Serum estradiol levels in all girls correlated with fat (r = -0.50 to -0.59, P = 0.03 to 0.005) and endogenous CHO oxidation (r = 0.50 to 0.63, P = 0.03 to 0.005) but not with CHO(exo) oxidation (r = -0.09, P = 0.71). We conclude that CHO(exo) influences endogenous substrate utilization in an age-dependent manner in healthy girls but that total CHO(exo) oxidation during exercise is not different between YG and OG. Our results also point to potential sex-related differences in energy substrate utilization even during childhood.

Authors

Timmons BW; Bar-Or O; Riddell MC

Journal

Journal of Applied Physiology, Vol. 103, No. 3, pp. 995–1000

Publisher

American Physiological Society

Publication Date

September 1, 2007

DOI

10.1152/japplphysiol.00018.2007

ISSN

8750-7587

Contact the Experts team