abstract
- For an epidemic to occur in a closed population, the transmission rate must be above a threshold level. In plant populations, the threshold depends not only on host density, but on the distribution of hosts in space. This paper presents an alternative analysis of a previously presented stochastic model for an epidemic in continuous space (Bolker, 1999, Bull. Math. Biol. 61, 849-874). A variety of moment closures are investigated to determine the dependence of the epidemic threshold on host spatial distribution and pathogen dispersal. Local correlations that arise during the early phase of the outbreak determine whether a true global epidemic will occur.