The Effects of Pulse Configuration on Magnetic Stimulation Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • A study is presented in which the authors have examined the effects of pulse configuration, stimulation intensity, and coil current direction during magnetic stimulation. Using figure-8 and circular coils, the median nerve was stimulated at the cubital fossa and at the wrist of 10 healthy volunteers, and the response amplitude and site of stimulation were determined. The key findings of this study are in agreement with other researchers' findings and confirm that biphasic stimulating pulses produce significantly higher M-wave amplitudes than monophasic stimulating pulses for the same stimulus intensity. Mean response amplitudes for biphasic stimuli applied by both coils at the elbow and wrist are consistently higher for the normal current direction. Mean response amplitudes for monophasic pulses are almost always higher for reversed currents. The site for effective stimulation (the position of the virtual cathode) cannot be defined within a fixed distance from the center of the coil (3 to 4 cm), as has been suggested by other researchers, but was found to vary depending on the coil current amplitude and direction as well as the degree of inhomogeneity of the tissues surrounding the nerve. There is a statistically significant relationship between virtual cathode shift and stimulus intensity for biphasic and monophasic pulses. Reversing the coil current direction has no statistically significant effect on the virtual cathode position. Virtual cathode shifts can be measured for biphasic and monophasic stimulations using a figure-8 coil at the wrist and the elbow. However, such a shift is difficult to determine with a circular coil.

publication date

  • September 2003