One-dimensional electron gas in strained lateral heterostructures of single layer materials Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractConfinement of the electron gas along one of the spatial directions opens an avenue for studying fundamentals of quantum transport along the side of numerous practical electronic applications, with high-electron-mobility transistors being a prominent example. A heterojunction of two materials with dissimilar electronic polarisation can be used for engineering of the conducting channel. Extension of this concept to single-layer materials leads to one-dimensional electron gas (1DEG). MoS2/WS2 lateral heterostructure is used as a prototype for the realisation of 1DEG. The electronic polarisation discontinuity is achieved by straining the heterojunction taking advantage of dissimilarities in the piezoelectric coupling between MoS2 and WS2. A complete theory that describes an induced electric field profile in lateral heterojunctions of two-dimensional materials is proposed and verified by first principle calculations.

publication date

  • June 28, 2017