abstract
- In this paper, a geometrical propagation model is developed that generalizes the classical single-scatter model under the assumption of first-order scattering and non-line-of-sight (NLOS) communication. The generalized model considers the case of a noncoplanar geometry, where it overcomes the restriction that the transmitter and the receiver cone axes lie in the same plane. To verify the model, a Monte Carlo (MC) radiative transfer model based on a photon transport algorithm is constructed. Numerical examples for a wavelength of 266 nm are illustrated, which corresponds to a solar-blind NLOS UV communication system. A comparison of the temporal responses of the generalized model and the MC simulation results shows close agreement. Path loss and delay spread are also shown for different pointing directions.