Rapid regulation of Na+fluxes and ammonia excretion in response to acute environmental hypoxia in the Amazonian oscar,Astronotus ocellatus Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The Amazonian oscar is extremely resistant to hypoxia, and tolerance scales with size. Overall, ionoregulatory responses of small (∼15 g) and large oscars (∼200 g) to hypoxia were qualitatively similar, but the latter were more effective. Large oscars exhibited a rapid reduction in unidirectional Na+uptake rate at the gills during acute hypoxia (Po2∼10 mmHg), which intensified with time (7 or 8 h); Na+efflux rates were also reduced, so net balance was little affected. The inhibitions were virtually immediate (1st h) and preceded a later 60% reduction (at 3 h) in gill Na+-K+-ATPase activity, reflected in a 60% reduction in maximum Na+uptake capacity without change in affinity (Km) for Na+. Upon acute restoration of normoxia, recovery of Na+uptake was delayed for 1 h. These data suggest that dual mechanisms may be involved (e.g., immediate effects of O2availability on transporters, channels, or permeability, slower effects of Na+-K+-ATPase regulation). Ammonia excretion appeared to be linked indirectly to Na+uptake, exhibiting a Michaelis-Menten relationship with external [Na+], but the Km was less than for Na+uptake. During hypoxia, ammonia excretion fell in a similar manner to Na+fluxes, with a delayed recovery upon normoxia restoration, but the relationship with [Na+] was blocked. Reductions in ammonia excretion were greater than in urea excretion. Plasma ammonia rose moderately over 3 h hypoxia, suggesting that inhibition of excretion was greater than inhibition of ammonia production. Overall, the oscar maintains excellent homeostasis of ionoregulation and N-balance during severe hypoxia.

authors

  • Wood, Chris M
  • Kajimura, Makiko
  • Sloman, Katherine A
  • Scott, Graham
  • Walsh, Patrick J
  • Almeida-Val, Vera MF
  • Val, Adalberto L

publication date

  • May 2007