Intestinal scavenger receptor class B type I as a novel regulator of chylomicron production in healthy and diet-induced obese states Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The small intestine contributes to diabetic dyslipidemia through the overproduction of apolipoprotein B48 (apoB48)-containing chylomicron particles. An important regulator of chylomicron generation is dietary lipid absorption, underlining the potential involvement of intestinal lipid transporters for developing dyslipidemia. Intestinal expression of scavenger receptor class B type I (SR-BI) has been found to be upregulated in animal models of insulin resistance. Here we characterized the potential importance of SR-BI in contributing to chylomicron production and postprandial hypertriglyceridemia in vivo. Postprandial triglyceride (TG)-rich lipoprotein (TRL) production was characterized in hamsters treated with the SR-BI inhibitor to block lipid transport-1 (BLT-1) under healthy conditions or conditions of diet-induced obesity and dyslipidemia. BLT-1 (1 mg/kg) or vehicle was administered acutely in chow-fed hamsters or gavaged twice daily over 10 days during high-fructose, high-fat, high-cholesterol (FFC) feeding. Effects of acute SR-BI inhibition by BLT-1 were confirmed in healthy fat-loaded rats. Finally, plasma lipid levels were compared between SR-BI−/−mice and their wild-type counterparts fed either chow or a 12-wk high-fat diet. Acute BLT-1 treatment reduced postprandial plasma and TRL TG levels in healthy hamsters and rats. Chronic BLT-1 treatment of FFC-fed hamsters blunted diet-induced weight gain and fasting hypertriglyceridemia, and lowered postprandial TRL-TG, -cholesterol, and -apoB48 levels. Finally, SR-BI−/−mice displayed lower plasma and TRL TG levels relative to wild type, and diet-induced weight gain and postprandial hypertriglyceridemia were hindered in SR-BI−/−mice. We conclude that intestinal SR-BI is a critical regulator of postprandial lipoprotein production, emphasizing its potential as a target for preventing diabetic dyslipidemia.

authors

publication date

  • September 1, 2015