Modeling and Experimentation of RAFT Solution Copolymerization of Styrene and Butyl Acrylate, Effect of Chain Transfer Reactions on Polymer Molecular Weight Distribution Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractChain transfer reactions widely exist in the free radical polymerization and controlled radical polymerization, which can significantly influence polymer molecular weight and molecular weight distribution. In this work, the chain transfer reactions in modeling the reversible addition–fragmentation transfer (RAFT) solution copolymerization are included and the effects of chain transfer rate constant, monomer concentration, and comonomer ratio on the polymerization kinetics and polymer molecular weight development are investigated. The model is verified with the experimental RAFT solution copolymerization of styrene and butyl acrylate, with good agreements achieved. This work has demonstrated that the chain transfer reactions to monomer and solvent can have significant impacts on the number‐average molecular weight (Mn) and dispersity (Ð).

authors

publication date

  • December 2017