Manganese‐enhanced MRI visualizes V1 in the non‐human primate visual cortex Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractMRI at 7 Tesla has been used to investigate the accumulation of manganese in the occipital cortex of common marmoset monkeys (Callithrix jacchus) after administering four fractionated injections of 30 mg/kg MnCl2 · 4H2O in the tail vein. We found a statistically significant decrease in T1 in the primary (V1) and secondary (V2) areas of the visual cortex caused by an accumulation of manganese. The larger T1 shortening in V1 (ΔT1 = 640 ms) relative to V2 (ΔT1 = 490 ms) allowed us to robustly detect the V1/V2 border in vivo using heavily T1‐weighted MRI. Furthermore, the dorso‐medial (DM) and middle‐temporal (MT) areas of the visual pathway could be identified by their T1‐weighted enhancement. We showed by comparison to histological sections stained for cytochrome oxidase (CO) activity that the extent of V1 is accurately identified throughout the visual cortex by manganese‐enhanced MRI (MEMRI). This provides a means of visualizing functional cortical regions in vivo and could be used in longitudinal studies of phenomena such as cortical plasticity, and for non‐destructive localization of cortical regions to guide in the implementation of functional techniques. Published in 2009 by John Wiley & Sons, Ltd.

publication date

  • August 2009