Long‐term stability of an ambient self‐curable latex based on colloidal dispersions in water of two reactive polymers Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractAn ambient self‐curable latex (ASCL) was prepared via the blending of colloidal dispersions in water of a chloromethylstyrene‐functionalized copolymer and a tertiary‐amine‐functionalized copolymer. Upon casting and drying under ambient conditions, the ASCL could generate crosslinked continuous polymer films. The crosslinking occurred via the Menschutkin reaction (quaternization) between the two types of functional groups. Because this reaction was reversible at high temperatures, the films could be decrosslinked and hence were self‐curable. The prepared ASCL exhibited excellent colloidal and chemical stability during long‐term storage: no significant changes in the colloidal properties, such as the particle size, electrophoretic mobility, and crosslinking reactivity, were observed after 48 months of storage. The electrophoretic measurements indicated that the electrostatic repulsion between the negatively charged particles of the ASCL was responsible for the excellent stability. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2598–2605, 2005

publication date

  • June 15, 2005